PDF chapter test TRY NOW

Graphs are an efficient way of visualizing curves and functions.
 
Let us discuss how to identify the graphs of a linear function.
Linear function:
A function f: \mathbb{R} \rightarrow \mathbb{R} defined by f(x) = mx + c, m \neq 0 is called a linear function.
The graph of a linear function simply represents a straight line.
 
Let us further discuss some specific linear functions.
  • Identity function
  • Additive inverse function
Identity function:
A function f: \mathbb{R} \rightarrow \mathbb{R} defined by f(x) = x, is called an identity function.
In other words, a linear function having an intercept c = 0 and a slope m = 1 is called an identity function.
 
The graphical representation of the identity function is given by:
 
Identity function.png
 
Additive inverse function:
A function f: \mathbb{R} \rightarrow \mathbb{R} defined by f(x) = - x, is called an additive inverse function.
In other words, a linear function having an intercept c = 0 and slope m = -1 is called an additive inverse function.
 
The graphical representation of the identity function is given by:
 
Add iverse dunc.png
 
Important!
The linear functions are always one-to-one functions.