PDF chapter test TRY NOW

Let us discuss how to identify the graphs of a quadratic function.
Quadratic function:
A function f: \mathbb{R} \rightarrow \mathbb{R} defined by f(x) = ax^2 + bx + c, a \neq 0 is called a quadratic function.
 
Let us further discuss some specific quadratic functions.
Specification 1:
A quadratic function f: \mathbb{R} \rightarrow \mathbb{R} with domain x \in \mathbb{R} and range f(x) \in [0, \infty) is defined by f(x) = x^2.
The graphical representation of this quadratic function is given by:
 
Q1.png
 
Specification II:
A function f: \mathbb{R} \rightarrow \mathbb{R} defined by f(x) = - x^2 is a quadratic function with a domain x \in \mathbb{R} and a range f(x) \in (- \infty, 0].
The graphical representation of the quadratic function is given by:
 
Q2.png
 
Important!
  • The quadratic functions are not one-to-one functions.
  • The equation of motion of the particle travelling under the influence of gravity is an example of the quadratic function of time.
shutterstock_1410089585.jpg