PDF chapter test TRY NOW
Let us look at an example to find standard deviation of a grouped data by step deviation method.
Example:
The number of buckets required to fill given volume of water are given below:
Volume (in litres) | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 |
Number of buckets | 3 | 7 | 11 | 15 | 18 |
Find its standard deviation using step deviation method.
Explanation:
Let the assumed mean be A = 7 and the class width c = 2.
Volume | Number of buckets (f_{i}) | Midpoint (x_{i}) | Deviation d_{i} = \frac{x_{i} - A}{c} | d_{i}^{2} | f_{i}d_{i} | f_{i}d_{i}^{2} |
2 - 4 | 3 | 3 | -2 | 4 | -6 | 12 |
4 - 6 | 7 | 5 | -1 | 1 | -7 | 7 |
6 - 8 | 11 | 7 | 0 | 0 | 0 | 0 |
8 - 10 | 15 | 9 | 1 | 1 | 15 | 15 |
10 - 12 | 18 | 11 | 2 | 4 | 36 | 72 |
\sum_{i = 1}^{5} f_{i} = 54 | \sum_{i = 1}^{5} f_{i}d_{i} = 38 | \sum_{i = 1}^{5} f_{i}d_{i}^{2} = 106 |
The formula to calculate the standard deviation by step deviation method is given by:
\sigma = c \times \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right) ^2} where N = \sum_{i = 1}^{n} f_{i} and d_{i} = \frac{x_{i} - A}{c}.
Substituting the known values in the above formula, we have:
\sigma = 2 \times \sqrt{\frac{106}{54}- \left(\frac{38}{54}\right) ^2}
= 2 \times \sqrt{1.96 - \left(0.7 \right) ^2}
= 2 \times \sqrt{1.96 - 0.49}
= 2 \times \sqrt{1.47}
= 2 \times 1.212
= 2.424
\approx 2.42
Therefore, the standard deviation of the given data is 2.42.