PDF chapter test TRY NOW

Let us look at an example to find standard deviation of a grouped data by step deviation method.
Example:
The number of buckets required to fill given volume of water are given below:
 
Volume (in litres)
2 - 4
4 - 6
6 - 8
8 - 10
10 - 12
Number of buckets
3
7
11
15
18
 
Find its standard deviation  using step deviation method
 
Explanation:
 
Let the assumed mean be A = 7 and the class width c = 2.
 
Volume
Number of buckets
(f_{i})
Midpoint
(x_{i})
Deviation
d_{i} = \frac{x_{i} - A}{c}
d_{i}^{2}
f_{i}d_{i}
f_{i}d_{i}^{2}
2 - 4
3
3
-2
4
-6
12
4 - 6
7
5
-1
1
-7
7
6 - 8
11
7
0
0
0
0
8 - 10
15
9
1
1
15
15
10 - 12
18
11
2
4
36
72
 
\sum_{i = 1}^{5} f_{i} = 54
 
 
 
\sum_{i = 1}^{5} f_{i}d_{i} = 38
\sum_{i = 1}^{5} f_{i}d_{i}^{2} = 106
The formula to calculate the standard deviation by step deviation method is given by:
 
\sigma = c \times \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right) ^2} where N = \sum_{i = 1}^{n} f_{i} and d_{i} = \frac{x_{i} - A}{c}.
Substituting the known values in the above formula, we have:
 
\sigma = 2 \times \sqrt{\frac{106}{54}- \left(\frac{38}{54}\right) ^2}
 
= 2 \times \sqrt{1.96 - \left(0.7 \right) ^2}
 
= 2 \times \sqrt{1.96 - 0.49}
 
= 2 \times \sqrt{1.47}
 
= 2 \times 1.212
 
= 2.424
 
\approx 2.42
 
Therefore, the standard deviation of the given data is 2.42.