UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let us look at an example to find standard deviation of a grouped data by assumed mean method.
Example:
Calculate the standard deviation of the following observations using assumed mean method.
 
\(x\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(f\)
\(19\)
\(5\)
\(7\)
\(23\)
\(16\)
\(13\)
 
Explanation:
 
Let the assumed mean \(A\) \(=\) \(3\).
 
Let us form a frequency distribution table.
 
\(x_{i}\)
\(f_{i}\)
\(d_{i} = x_{i} - A\)
 
\(=\) \(x_{i} - 3\)
\(f_{i} d_{i}\)
\(d_{i}^{2}\)
\(f_{i}d_{i}^{2}\)
\(1\)
\(19\)
\(-2\)
\(-38\)
\(4\)
\(76\)
\(2\)
\(5\)
\(-1\)
\(-5\)
\(1\)
\(5\)
\(3\)
\(7\)
\(0\)
\(0\)
\(0\)
\(0\)
\(4\)
\(23\)
\(1\)
\(23\)
\(1\)
\(23\)
\(5\)
\(16\)
\(2\)
\(32\)
\(4\)
\(64\)
\(6\)
\(13\)
\(3\)
\(39\)
\(9\)
\(117\)
 
\(\sum_{i = 1}^{6} f_{i} = 83\)
 
\(\sum_{i = 1}^{6}  f_{i} d_{i}\) \(=\) \(51\)
 
\(\sum_{i = 1}^{6}  f_{i} d_{i}^{2} = 285\)
The  formula to calculate the standard deviation by assumed mean method is given by:
 
\(\sigma = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right)^2}\) where \(N = \sum_{i = 1}^{n} f_{i}\).
Substitute the required values in the above formula.
 
\(\sigma = \sqrt{\frac{285}{83}- \left(\frac{51}{83}\right)^2}\)
 
\(=\) \(\sqrt{3.434 - \left(0.614 \right)^2}\)
 
\(=\) \(\sqrt{3.434 - 0.378}\)
 
\(=\) \(\sqrt{3.056}\)
 
\(=\) \(1.748\)
 
\(\approx\) \(1.75\)
 
Therefore, the standard deviation of the given data is \(1.75\).