PDF chapter test TRY NOW
Let us look at an example to find standard deviation of a grouped data by assumed mean method.
Example:
Calculate the standard deviation of the following observations using assumed mean method.
x | 1 | 2 | 3 | 4 | 5 | 6 |
f | 19 | 5 | 7 | 23 | 16 | 13 |
Explanation:
Let the assumed mean A = 3.
Let us form a frequency distribution table.
x_{i} | f_{i} | d_{i} = x_{i} - A = x_{i} - 3 | f_{i} d_{i} | d_{i}^{2} | f_{i}d_{i}^{2} |
1 | 19 | -2 | -38 | 4 | 76 |
2 | 5 | -1 | -5 | 1 | 5 |
3 | 7 | 0 | 0 | 0 | 0 |
4 | 23 | 1 | 23 | 1 | 23 |
5 | 16 | 2 | 32 | 4 | 64 |
6 | 13 | 3 | 39 | 9 | 117 |
\sum_{i = 1}^{6} f_{i} = 83 | \sum_{i = 1}^{6} f_{i} d_{i} = 51 | \sum_{i = 1}^{6} f_{i} d_{i}^{2} = 285 |
The formula to calculate the standard deviation by assumed mean method is given by:
\sigma = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right)^2} where N = \sum_{i = 1}^{n} f_{i}.
Substitute the required values in the above formula.
\sigma = \sqrt{\frac{285}{83}- \left(\frac{51}{83}\right)^2}
= \sqrt{3.434 - \left(0.614 \right)^2}
= \sqrt{3.434 - 0.378}
= \sqrt{3.056}
= 1.748
\approx 1.75
Therefore, the standard deviation of the given data is 1.75.