PDF chapter test TRY NOW

Let us look at an example to find standard deviation of a grouped data by assumed mean method.
Example:
Calculate the standard deviation of the following observations using assumed mean method.
 
x
1
2
3
4
5
6
f
19
5
7
23
16
13
 
Explanation:
 
Let the assumed mean A = 3.
 
Let us form a frequency distribution table.
 
x_{i}
f_{i}
d_{i} = x_{i} - A
 
= x_{i} - 3
f_{i} d_{i}
d_{i}^{2}
f_{i}d_{i}^{2}
1
19
-2
-38
4
76
2
5
-1
-5
1
5
3
7
0
0
0
0
4
23
1
23
1
23
5
16
2
32
4
64
6
13
3
39
9
117
 
\sum_{i = 1}^{6} f_{i} = 83
 
\sum_{i = 1}^{6}  f_{i} d_{i} = 51
 
\sum_{i = 1}^{6}  f_{i} d_{i}^{2} = 285
The  formula to calculate the standard deviation by assumed mean method is given by:
 
\sigma = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right)^2} where N = \sum_{i = 1}^{n} f_{i}.
Substitute the required values in the above formula.
 
\sigma = \sqrt{\frac{285}{83}- \left(\frac{51}{83}\right)^2}
 
= \sqrt{3.434 - \left(0.614 \right)^2}
 
= \sqrt{3.434 - 0.378}
 
= \sqrt{3.056}
 
= 1.748
 
\approx 1.75
 
Therefore, the standard deviation of the given data is 1.75.