PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
The standard deviation of an grouped data (either discrete or continuous) can be calculated using one of the following methods:
  • Mean Method:
Let x_{1}, x_{2}, x_{3}, … , x_{n} be the given data for n observations.
 
And, \overline{x} is the mean of the n observations.
 
Let f_{i} be the frequency values of the corresponding data values x_{i} and d_{i} = x_{i} - \overline{x} (deviations from  mean).
 
Then, the formula to calculate the standard deviation by mean method is given by:
 
\sigma = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}} where N = \sum_{i = 1}^{n} f_{i}
  • Assumed Mean Method:
If the mean of the given data is not an integer, then use the assumed mean method to find the standard deviation.
 
Let x_{1}, x_{2}, x_{3}, … , x_{n} be the given data and \overline{x} be its mean.
 
Let f_{i} be the frequency values of the corresponding data values x_{i}.
 
Let d_{i} be the deviation of each observation x_{i} from the assumed mean A where A is the middle most value of the given data. That is, d_{i} = x_{i} - A.
 
Then, the formula to calculate the standard deviation by assumed mean method is given by:
 
\sigma = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right)^2} where N = \sum_{i = 1}^{n} f_{i}.
  • Step Deviation Method:
Let x_{1}, x_{2}, x_{3}, … , x_{n} be the middle values of the given class interval correspondingly and A is its assumed mean.
 
Let f_{i} be the frequency values of the corresponding middle values x_{i}.
 
Let c be the width of the class interval.
 
Let d_{i} = \frac{x_{i} - A}{c}.
 
Then, the formula to calculate the standard deviation by step deviation method is given by:
 
\sigma = c \times \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}- \left(\frac{\sum f_{i} d_{i}}{N}\right) ^2} where N = \sum_{i = 1}^{n} f_{i}.