
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoLet us look at an example to find standard deviation of ungrouped data by direct method.
Example:
Find the standard deviation of the data 5, 8, 10, 11 and 9 by direct method.
Explanation:
Let n represent the number of values in the given data.
n = 5
Let x_{i} represent the each value of the data.
x_{i} | x_{i}^{2} |
5 | 25 |
8 | 64 |
10 | 100 |
11 | 121 |
9 | 81 |
\sum x_{i} = 43 | \sum x_{i}^{2} = 391 |
The formula to calculate the standard deviation by direct method is given by:
\sigma = \sqrt{\frac{\sum x_{i}^{2}}{n}- \left(\frac{\sum x_{i}}{n}\right)^2}
Substitute the known values in the above formula.
\sigma = \sqrt{\frac{391}{5}- \left(\frac{43}{5}\right)^2}
= \sqrt{78.2 - (8.6)^2}
= \sqrt{78.2 - 73.96}
= \sqrt{4.24}
= 2.0591
\approx 2.06
Therefore, the standard deviation of the given data is 2.06.