UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let us look at an example to find standard deviation of ungrouped data by step deviation method.
Example:
The wages of six co-workers are given below.
 
\(250\), \(260\), \(270\), \(300\), \(310\), \(330\)
 
Find its standard deviation by step deviation method.
 
Explanation:
 
Let \(n\) represent the number of co-workers.
 
\(n\) \(=\) \(6\)
 
Let \(A\) be the assumed mean, which is the middle most value.
 
Here, \(A\) \(=\) \(270\).
 
Let \(c\) be the common divisor.
 
Here, \(c = 10\).
 
Let \(x_{i}\) represent the wages of each worker.
 
\(x_{i}\)
\(x_{i} - A\)
 
\(=\) \(x_{i} - 270\)
\(d_{i} = \frac{x_{i} - A}{c}\)
 
\(=\) \(\frac{x_{i} - A}{10}\)
\(d_{i}^{2}\)
\(250\)
\(-20\)
\(-2\)
\(4\)
\(260\)
\(-10\)
\(-1\)
\(1\)
\(270\)
\(0\)
\(0\)
\(0\)
\(300\)
\(30\)
\(3\)
\(9\)
\(310\)
\(40\)
\(4\)
\(16\)
\(330\)
\(60\)
\(6\)
\(36\)
 
 
\(\sum d_{i} = 10\)
\(\sum d_{i}^{2} = 66\)
The  formula to calculate the standard deviation by step deviation method is given by:
 
\(\sigma = c \times \sqrt{\frac{\sum d_{i}^{2}}{n}- \left(\frac{\sum d_{i}}{n}\right)^2}\) where \(d_{i} = \frac{x_{i} - A}{c}\).
Substitute the known values in the above formula.
 
\(\sigma = 10 \times \sqrt{\frac{66}{6}- \left(\frac{10}{6}\right)^2}\)
 
\(=\) \(10 \times \sqrt{11 - (1.667)^2}\)
 
\(=\) \(10 \times \sqrt{11 - 2.779}\)
 
\(=\) \(10 \times \sqrt{8.221}\)
 
\(=\) \(10 \times 2.8672\)
 
\(=\) \(28.672\)
 
\(\approx\) \(28.67\)
 
Therefore, the standard deviation of the given data is \(28.67\).