PDF chapter test TRY NOW

Let us look at an example to find standard deviation of ungrouped data by step deviation method.
Example:
The wages of six co-workers are given below.
 
250, 260, 270, 300310, 330
 
Find its standard deviation by step deviation method.
 
Explanation:
 
Let n represent the number of co-workers.
 
n = 6
 
Let A be the assumed mean, which is the middle most value.
 
Here, A = 270.
 
Let c be the common divisor.
 
Here, c = 10.
 
Let x_{i} represent the wages of each worker.
 
x_{i}
x_{i} - A
 
= x_{i} - 270
d_{i} = \frac{x_{i} - A}{c}
 
= \frac{x_{i} - A}{10}
d_{i}^{2}
250
-20
-2
4
260
-10
-1
1
270
0
0
0
300
30
3
9
310
40
4
16
330
60
6
36
 
 
\sum d_{i} = 10
\sum d_{i}^{2} = 66
The  formula to calculate the standard deviation by step deviation method is given by:
 
\sigma = c \times \sqrt{\frac{\sum d_{i}^{2}}{n}- \left(\frac{\sum d_{i}}{n}\right)^2} where d_{i} = \frac{x_{i} - A}{c}.
Substitute the known values in the above formula.
 
\sigma = 10 \times \sqrt{\frac{66}{6}- \left(\frac{10}{6}\right)^2}
 
= 10 \times \sqrt{11 - (1.667)^2}
 
= 10 \times \sqrt{11 - 2.779}
 
= 10 \times \sqrt{8.221}
 
= 10 \times 2.8672
 
= 28.672
 
\approx 28.67
 
Therefore, the standard deviation of the given data is 28.67.