UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let us look at an example to find standard deviation of a grouped data by mean method.
Example:
Case 1: Discrete data
 
Find the standard deviation of the following data by mean method.
 
\(x\)
\(1\)
\(2\)
\(3\)
\(4\)
\(f\)
\(4\)
\(8\)
\(12\)
\(16\)
  
Explanation:
We know that the formula for finding the arithmetic mean using direct method is given by:
 
\(\overline x = \frac{\sum_{i = 1}^{n}  f_{i} x_{i}}{\sum_{i = 1}^{n} f_{i}}\)
 
Where \(x_{i}\) is the midpoint of the class interval and \(f_{i}\) is the frequency.
Let us form a frequency distribution table.
 
\(x_{i}\)
\(f_{i}\)
\(f_{i} x_{i}\)
\(1\)
\(4\)
\(4\)
\(2\)
\(8\)
\(16\)
\(3\)
\(12\)
\(36\)
\(4\)
\(16\)
\(64\)
  
\(\sum_{i = 1}^{4} f_{i} = 40\)
\(\sum_{i = 1}^{4}  f_{i} x_{i} = 120\)
 
Substituting the known values in the above formula, we get:
 
Mean \(\overline x = \frac{120}{40}\) \(=\) \(3\)
 
Thus, the meanof the given data is
 
Now, let us find the standard deviation for the given data.
 
\(x_{i}\)
\(f_{i}\)
\(d_{i} = x_{i} - \overline x\)
 
\(=\) \(x_{i} - 3\)
\(d_{i}^{2}\)
\(f_{i}d_{i}^{2}\)
\(1\)
\(4\)
\(-2\)
\(4\)
\(16\)
\(2\)
\(8\)
\(-1\)
\(1\)
\(8\)
\(3\)
\(12\)
\(0\)
\(0\)
\(0\)
\(4\)
\(16\)
\(1\)
\(1\)
\(16\)
 
\(\sum_{i = 1}^{4} f_{i} = 40\)
 
 
\(\sum_{i = 1}^{4}  f_{i} d_{i}^{2} = 40\)
The formula to calculate the standard deviation by mean method is given by:
 
\(\sigma\) \(=\) \(\sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}}\) where \(N = \sum_{i = 1}^{n} f_{i}\)
Substitute the required values in the above formula.
 
\(\sigma\) \(=\) \(\sqrt{\frac{40}{40}}\)
 
\(=\) \(\sqrt{1}\)
 
\(=\) \(1\)
 
Therefore, the standard deviation of the given data is \(1\).
 
Case 2: Continuous data
 
Find the standard deviation of the following data by mean method.
 
\(x\)
\(0 - 2\)
\(2 - 4\)
\(4 - 6\)
\(6 - 8\)
\(f\)
\(4\)
\(8\)
\(12\)
\(16\)
 
Explanation:
We know that the formula for finding the arithmetic mean using direct method is given by:
 
\(\overline x = \frac{\sum_{i = 1}^{n}  f_{i} x_{i}}{\sum_{i = 1}^{n} f_{i}}\)
 
Where \(x_{i}\) is the midpoint of the class interval and \(f_{i}\) is the frequency.
Let us form a frequency distribution table.
 
Class interval
Frequency
(\(f_{i}\))
Midpoint
(\(x_{i}\))
\(f_{i} x_{i}\)
\(0 - 2\)
\(4\)
\(1\)
\(4\)
\(2 - 4\)
\(8\)
\(3\)
\(24\)
\(4 - 6\)
\(12\)
\(5\)
\(60\)
\(6 - 8\)
\(16\)
\(7\)
\(112\)
  
\(\sum_{i = 1}^{4} f_{i} = 40\)
 
\(\sum_{i = 1}^{4}  f_{i} x_{i} = 200\)
 
Substituting the known values in the above formula, we get:
 
Mean \(\overline x = \frac{200}{40}\) \(=\) \(5\)
 
Thus, the mean of the given data is \(5\)
 
Now, let us find the standard deviation for the given data.
 
\(x_{i}\)
\(f_{i}\)
\(d_{i} = x_{i} - \overline x\)
 
\(=\) \(x_{i} - 5\)
\(d_{i}^{2}\)
\(f_{i}d_{i}^{2}\)
\(1\)
\(4\)
\(-4\)
\(16\)
\(64\)
\(3\)
\(8\)
\(-2\)
\(4\)
\(32\)
\(5\)
(12\)
\(0\)
\(0\)
\(0\)
\(7\)
\(16\)
\(2\)
\(4\)
\(64\)
 
\(\sum_{i = 1}^{4} f_{i} = 40\)
 
 
\(\sum_{i = 1}^{4}  f_{i} d_{i}^{2} = 160\)
The formula to calculate the standard deviation by mean method is given by:
 
\(\sigma\) \(=\) \(\sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}}\) where \(N = \sum_{i = 1}^{n} f_{i}\)
Substitute the required values in the above formula.
 
\(\sigma\) \(=\) \(\sqrt{\frac{160}{40}}\)
 
\(=\) \(\sqrt{4}\)
 
\(=\) \(2\)
 
Therefore, the standard deviation of the given data is \(2\).