UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let ABC be a right angled triangle.
 
Right triangle.png
 
Let 0^\circ < \theta < 90^\circ.
 
\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse}} = \frac{AB}{AC}
 
\cos \theta = \frac{\text{Adjacent side}}{\text{Hypotenuse}} = \frac{BC}{AC}
 
\tan \theta = \frac{\text{Opposite side}}{\text{Adjacent side}} = \frac{AB}{BC}
 
\text{cosec}\: \theta = \frac{\text{Hypotenuse}}{\text{Opposite side}} = \frac{AC}{AB}
 
\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent side}} = \frac{AC}{BC}
 
\cot \theta = \frac{\text{Adjacent side}}{\text{Opposite side}} = \frac{BC}{AB}
\tan \theta = \frac{\sin \theta}{\cos \theta}
 
\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}
 
\text{cosec}\: \theta = \frac{1}{\sin \theta}
 
\sec \theta = \frac{1}{\cos \theta}
Trigonometric ratio table
Trigonometry table.png