Login
Login
Sign up
Start
Mathmania
Teacher tutorials
TOP
Subjects
Bridge Course
Testworks
Subject updates
Ya+
News
Send feedback
See more
Contacts
About Us
Terms and Conditions
Privacy Policy
PDF chapter test
TRY NOW
Subjects
Mathematics State Board
Class 9
Algebra
Algebraic identities
4.
Cubic identity for three variables
Theory:
Identity:
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
Example:
Expand \(27x^3 + 8y^3 + z^3 - 18xyz\).
Solution
:
Let us write the expression of \(27x^3 + 8y^3 + z^3 - 18xyz\) using the identity
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
.
27
x
3
+
8
y
3
+
z
3
−
12
xyz
=
3
x
3
+
2
y
3
+
z
3
−
3
3
x
2
y
z
\(=\)
3
x
+
2
y
+
z
9x
2
+
4y
2
+
z
2
−
(
3x
)
(
2y
)
−
(
2y
)
(
z
)
−
(
3
x
)
(
z
)
\(=\)
3
x
+
2
y
+
z
3x
2
+
2y
2
+
z
2
−
6
xy
−
2
yz
−
3
xz
Important!
If
a
3
+
b
3
+
c
3
=
0
then the identity
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
is rewritten as follows:
a
3
+
b
3
+
c
3
−
3
abc
=
0
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
a
3
+
b
3
+
c
3
−
3
abc
=
0
a
3
+
b
3
+
c
3
=
3
abc
Example:
Previous theory
Exit to the topic
Next theory
Send feedback
Did you find an error?
Send it to us!