UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let us derive the cubic identities with the help of known identitites.
Expansion of \((x+y)^3\):
Substitute \(a = b = c = y\) in the identity \((x+a)(x+b)(x+c)\) \(=\) \(x^3\)\(+(a+b+c)x^2\)\(+(ab+bc+ca)x+abc\).
 
Consider the LHS, \((x+a)(x+b)(x+c)\).
 
\((x+a)(x+b)(x+c)\) \(=\) \((x+y)(x+y)(x+y)\)
 
\(=\) \((x+y)^{3}\)
 
Consider the RHS, \(x^3\)\(+(a+b+c)x^2\)\(+(ab+bc+ca)x+abc\).
 
\(x^3\)\(+(a+b+c)x^2\)\(+(ab+bc+ca)x+abc\) \(=\) \(x^3\)\(+(y+y+y)x^2\)\(+(yy+yy+yy)x+yyy\)
 
\(=\) \(x^3\)\(+(3y)x^2\)\(+(y^2+y^2+y^2)x+y^3\)
 
\(=\) \(x^3\)\(+3yx^2\)\(+3y^2x+y^3\)
 
Thus, the identity is \((x+y)^3\) \(=\) \(x^3+3x^2y+3xy^2+y^3\).
 
The obtained cubic identity can also be rewritten as follows:
 
Consider the standard identity, \((x+y)^3\)\(=\)\(x^3+3x^2y\)\(+3xy^2+y^3\).
 
Take the factor \(3xy\) from the middle two terms of RHS.
 
Thus, x+y3=x3+y3+3xyx+y.
Expansion of \((x-y)^3\):
Replace \(y\) by \(-y\) in the cubic identity of \((x+y)^3\)\(=\)\(x^3+3x^2y\)\(+3xy^2+y^3\).
 
\((x+(-y))^3\) \(=\) \(x^3+3x^2(-y)+3x(-y)^2+(-y)^3\)
 
\((x-y)^3\) \(=\) \(x^3-3x^2y+3xy^2-y^3\)
 
Thus, the identity is \((x-y)^3\) \(=\) \(x^3-3x^2y+3xy^2-y^3\)
 
The obtained cubic identity can also be rewritten as follows:
 
Consider the standard identity, \((x-y)^3\) \(=\) \(x^3-3x^2y+3xy^2-y^3\).
 
Take the factor \(3xy\) from the middle two terms of RHS.
 
Thus, xy3=x3y3+3xyxy
 
Let us summarize the identities...
 
  • \((x+y)^3\)\(=\)\(x^3+3x^2y\)\(+3xy^2+y^3\) or x+y3=x3+y3+3xyx+y
  • \((x-y)^3\) \(=\) \(x^3-3x^2y+3xy^2-y^3\) or xy3=x3y3+3xyxy
 
Click here! to explore some examples on the expansion of cubic terms.