PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Let us derive the cubic identities with the help of known identitites.
Expansion of (x+y)^3:
Substitute a = b = c = y in the identity (x+a)(x+b)(x+c) = x^3+(a+b+c)x^2+(ab+bc+ca)x+abc.
 
Consider the LHS, (x+a)(x+b)(x+c).
 
(x+a)(x+b)(x+c) = (x+y)(x+y)(x+y)
 
= (x+y)^{3}
 
Consider the RHS, x^3+(a+b+c)x^2+(ab+bc+ca)x+abc.
 
x^3+(a+b+c)x^2+(ab+bc+ca)x+abc = x^3+(y+y+y)x^2+(yy+yy+yy)x+yyy
 
= x^3+(3y)x^2+(y^2+y^2+y^2)x+y^3
 
= x^3+3yx^2+3y^2x+y^3
 
Thus, the identity is (x+y)^3 = x^3+3x^2y+3xy^2+y^3.
 
The obtained cubic identity can also be rewritten as follows:
 
Consider the standard identity, (x+y)^3=x^3+3x^2y+3xy^2+y^3.
 
Take the factor 3xy from the middle two terms of RHS.
 
Thus, x+y3=x3+y3+3xyx+y.
Expansion of (x-y)^3:
Replace y by -y in the cubic identity of (x+y)^3=x^3+3x^2y+3xy^2+y^3.
 
(x+(-y))^3 = x^3+3x^2(-y)+3x(-y)^2+(-y)^3
 
(x-y)^3 = x^3-3x^2y+3xy^2-y^3
 
Thus, the identity is (x-y)^3 = x^3-3x^2y+3xy^2-y^3
 
The obtained cubic identity can also be rewritten as follows:
 
Consider the standard identity, (x-y)^3 = x^3-3x^2y+3xy^2-y^3.
 
Take the factor 3xy from the middle two terms of RHS.
 
Thus, xy3=x3y3+3xyxy
 
Let us summarize the identities...
 
  • (x+y)^3=x^3+3x^2y+3xy^2+y^3 or x+y3=x3+y3+3xyx+y
  • (x-y)^3 = x^3-3x^2y+3xy^2-y^3 or xy3=x3y3+3xyxy
 
Click here! to explore some examples on the expansion of cubic terms.