PDF chapter test TRY NOW

Answer variants:
1,3,5,7,9
3,5,7
1,2,4,6,8,9
2,4,6,8
1,2,3,4,5,6,7,8,9
1,4,6,8,9
If P = \{x: x \in W \ \text{and} \ 0 < x < 10\}, Q = \{x: x = 2n + 1, n \in W \ \text{and} \ n < 5\} and R = \{2, 3, 5, 7, 11, 13\}, then verify P - (Q \cap R) = (P - Q) \cup (P - R).
 
Proof:
 
P =
 
Q =
 
R = \{2, 3, 5, 7, 11, 13\}
 
Q \cap R =
 
P - (Q \cap R) =
 ---- (1)
 
P - Q =
 
P - R =
 
(P - Q) \cup (P - R) =
 ---- (2)
 
From equations (1) and (2), P - (Q \cap R) = (P - Q) \cup (P - R).
 
Hence, we proved.