UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Answer variants:
1,3,5,7,9
3,5,7
1,2,4,6,8,9
2,4,6,8
1,2,3,4,5,6,7,8,9
1,4,6,8,9
If \(P = \{x: x \in W \ \text{and} \ 0 < x < 10\}\), \(Q = \{x: x = 2n + 1, n \in W \ \text{and} \ n < 5\}\) and \(R = \{2, 3, 5, 7, 11, 13\}\), then verify \(P - (Q \cap R) = (P - Q) \cup (P - R)\).
 
Proof:
 
\(P =\)
 
\(Q =\)
 
\(R = \{2, 3, 5, 7, 11, 13\}\)
 
\(Q \cap R =\)
 
\(P - (Q \cap R) =\)
 ---- (\(1\))
 
\(P - Q =\)
 
\(P - R =\)
 
\((P - Q) \cup (P - R) =\)
 ---- (\(2\))
 
From equations (\(1\)) and (\(2\)), \(P - (Q \cap R) = (P - Q) \cup (P - R)\).
 
Hence, we proved.