PDF chapter test TRY NOW
Answer variants:
If P = \{x: x \in W \ \text{and} \ 0 < x < 10\}, Q = \{x: x = 2n + 1, n \in W \ \text{and} \ n < 5\} and R = \{2, 3, 5, 7, 11, 13\}, then verify P - (Q \cap R) = (P - Q) \cup (P - R).
Proof:
P =
Q =
R = \{2, 3, 5, 7, 11, 13\}
Q \cap R =
P - (Q \cap R) = ---- (1)
P - Q =
P - R =
(P - Q) \cup (P - R) = ---- (2)
From equations (1) and (2), P - (Q \cap R) = (P - Q) \cup (P - R).
Hence, we proved.