UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreIf \(U = \{x: x \in Z, -2 \leq x \leq 10\}\), \(A = \{x: x = 2p + 1, p \in Z, -1 \leq p \leq 4\}\), \(B = \{x: x = 3p + 1, q \in Z, -1 \leq q < 4\}\), verify De Morgan's laws for complementation.
Proof:
Law (i): Let us prove that \((A \cup B)' = A' \cap B'\)
\(A \cup B =\)
\((A \cup B)' =\) ---- (\(1\))
\(A' =\)
\(B' =\)
\(A' \cap B' =\) ---- (\(2\))
From equations (\(1\)) and (\(2\)), \((A \cup B)' = A' \cap B'\).
Hence, we proved.
Law (ii): Let us prove that \((A \cap B)' = A' \cup B'\)
\(A \cap B =\)
\((A \cap B)' =\) ---- (\(3\))
\(A' \cup B' =\) ---- (\(4\))
From equations (\(3\)) and (\(4\)), \((A \cap B)' = A' \cup B'\).
Hence, we proved.
(Note: Enter the numbers in ascending order.)