PDF chapter test TRY NOW

If \(U = \{x: x \in Z, -2 \leq x \leq 10\}\), \(A = \{x: x = 2p + 1, p \in Z, -1 \leq p \leq 4\}\), \(B = \{x: x = 3p + 1, q \in Z, -1 \leq q < 4\}\), verify De Morgan's laws for complementation.
 
Proof:
 
Law (i): Let us prove that \((A \cup B)' = A' \cap B'\)
 
\(A \cup B =\) i,i,i,i,i,i,i,i,i
 
\((A \cup B)' =\) i,i,i,i ---- (\(1\))
 
\(A' =\) i,i,i,i,i,i,i
 
\(B' =\) i,i,i,i,i,i,i,i
 
\(A' \cap B' =\) i,i,i,i ---- (\(2\))
 
From equations (\(1\)) and (\(2\)), \((A \cup B)' = A' \cap B'\).
 
Hence, we proved.
 
Law (ii): Let us prove that \((A \cap B)' = A' \cup B'\)
 
\(A \cap B =\) i,i
 
\((A \cap B)' =\) i,i,i,i,i,i,i,i,i,i,i ---- (\(3\))
 
\(A' \cup B' =\) i,i,i,i,i,i,i,i,i,i,i ---- (\(4\))
 
From equations (\(3\)) and (\(4\)), \((A \cap B)' = A' \cup B'\).
 
Hence, we proved.
 
(Note: Enter the numbers in ascending order.)