PDF chapter test TRY NOW

Let us recall that if the sum of the two acute angles is 90^{\circ}, then the angles are said to be complementary.
 
In a right-angled triangle, the sum of two acute angles are 90^{\circ}.
 
That is, we can say that the two acute angles in a right-angled triangle are complementary.
 
Consider the triangle PQR right-angled at P.
 
complementarty angles.png
 
Here R and Q are complementary angles.
 
Therefore if \angle R = \theta, then \angle Q = 90^{\circ} - \theta.
 
Let us write all the trigonometric ratios with respect to \angle R = \theta in a table.
 
Table 1:
 
Trigonometric ratio
Relationship with the \Delta PQR
Trigonometric ratio
Relationship with the \Delta PQR
\sin \theta
\sin \theta = \frac{PQ}{RQ}
\text{cosec}\,\theta
\text{cosec}\,\theta = \frac{RQ}{PQ}
\cos \theta
\cos \theta = \frac{PR}{RQ}
\sec \theta
\sec \theta = \frac{RQ}{PR}
\tan \theta
\tan \theta = \frac{PQ}{PR}
\cot \theta
\cot \theta = \frac{PR}{PQ}
 
Now let us write all the trigonometric ratios with respect to \angle Q = 90^{\circ} - \theta in a table.
 
Table 2:
 
Trigonometric ratio
Relationship with the \Delta PQR
Trigonometric ratio
Relationship with the \Delta PQR
\sin (90^{\circ} - \theta)
\sin (90^{\circ} - \theta) = \frac{PR}{RQ}
\text{cosec}\,(90^{\circ} - \theta)
\text{cosec}\,(90^{\circ} - \theta) = \frac{RQ}{PR}
\cos (90^{\circ} - \theta)
\cos (90^{\circ} - \theta) = \frac{PQ}{RQ}
\sec (90^{\circ} - \theta)
\sec (90^{\circ} - \theta) = \frac{RQ}{PQ}
\tan (90^{\circ} - \theta)
\tan (90^{\circ} - \theta) = \frac{PR}{PQ}
\cot (90^{\circ} - \theta)
\cot (90^{\circ} - \theta) = \frac{PQ}{PR}
 
Comparing the tables 1 and 2, we arrive at the following identities.
 
1. \sin \theta = \cos (90^{\circ} - \theta)
 
2. \cos \theta = \sin (90^{\circ} - \theta)
 
3. \tan \theta = \cot (90^{\circ} - \theta)
 
4. \text{cosec}\,\theta = \sec (90^{\circ} - \theta)
 
5. \sec \theta = \text{cosec}(90^{\circ} - \theta)
 
6. \cot \theta = \tan (90^{\circ} - \theta)