PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Consider an equilateral triangle ABC with sides measuring 2 units.
 
That is AB = BC = CA = 2 units.
 
Draw a bisector of \angle A such that it meets BC at D.
 
The angle bisector of an equilateral triangle also bisects the side opposite it.
 
So, BD = DC = 1 unit.
 
30 60 deg.png
 
First, let us calculate the measure of angle bisector BD in the figure.
 
Consider the triangle ABD.
 
Since the given triangle is a right-angled triangle by the Pythagoras theorem, we have:
In a right angled triangle, \text{Hypotenuse}^{2} = \text{Adjacent side}^{2} + \text{Opposite side}^{2}.
AB^2 = BD^2 + DA^2.
 
DA^2 = AB^2 - BD^2
 
DA^2 =  2^2 - 1^2
 
DA^2 = 4 - 1
 
DA^2 = 3
 
\Rightarrow DA = \sqrt{3}
 
Therefore,  for the considered right-angled triangle, we have:
 
With respect to 30^{\circ}With respect to 60^{\circ}
Opposite side = 1 unitsOpposite side = \sqrt{3} units
Adjacent side = \sqrt{3} unitsAdjacent side = 1 units
Hypotenuse = 2 unitsHypotenuse = 2 units
 
Now, let us determine all the trigonometric ratios of 30^{\circ} and 60^{\circ}.
 
  • Sine:
 
\sin 30^{\circ}
\sin 60^{\circ}
\sin 30^{\circ} = \frac{\text{Opposite side}}{\text{Hypotenuse}}
 
= \frac{1}{2}
\sin 60^{\circ} = \frac{\text{Opposite side}}{\text{Hypotenuse}}
 
= \frac{\sqrt{3}}{2}
 
  • Cosine 30^{\circ}:
 
\cos 30^{\circ}
\cos 60^{\circ}
\cos 30^{\circ} = \frac{\text{Adjacent side}}{\text{Hypotenuse}}
 
= \frac{\sqrt{3}}{2}
\cos 60^{\circ} = \frac{\text{Adjacent side}}{\text{Hypotenuse}}
 
= \frac{1}{2}
 
  • Tangent:
 
\tan 30^{\circ}
\tan 60^{\circ}
\tan 30^{\circ} = \frac{\text{Opposite side}}{\text{Adjacent side}}
 
= \frac{1}{\sqrt{3}}
\tan 60^{\circ} = \frac{\text{Opposite side}}{\text{Adjacent side}}
 
= \frac{\sqrt{3}}{1}
 
= \sqrt{3}
 
Using these basic trigonometric ratios determine their reciprocals as follows:
 
  • Cosecant:
 
\text{cosec}\,30^{\circ}
\text{cosec}\,60^{\circ}
\text{cosec}\,30^{\circ} = \frac{1}{\sin 30^{\circ}}
 
= \frac{2}{1}
 
= 2
\text{cosec}\,60^{\circ} = \frac{1}{\sin 60^{\circ}}
 
= \frac{2}{\sqrt{3}}
 
  • Secant:
 
\sec 30^{\circ}
\sec 60^{\circ}
\sec 30^{\circ} = \frac{1}{\cos 30^{\circ}}
 
= \frac{2}{\sqrt{3}}
\sec 60^{\circ} = \frac{1}{\cos 60^{\circ}}
 
= \frac{2}{1}
 
= 2
 
  • Cotangent:
 
\cot 30^{\circ}
\cot 60^{\circ}
\cot 30^{\circ} = \frac{\text{1}}{\tan 30^{\circ}}
 
=  \frac{\sqrt{3}}{1}
 
= \sqrt{3}
\cot 60^{\circ} = \frac{\text{1}}{\tan 60^{\circ}}
 
= \frac{1}{\sqrt{3}}
 
Let us summarize all the trigonometric ratios of 30^{\circ} and 60^{\circ} in the following table.
 
 
\sin \theta
\cos \theta
\tan \theta
\text{cosec}\,\theta
\sec \theta
\cot \theta
\theta = 30^{\circ}
\frac{1}{2}
\frac{\sqrt{3}}{2}
\frac{1}{\sqrt{3}}
2
\frac{2}{\sqrt{3}}
\sqrt{3}
\theta = 60^{\circ}
\frac{\sqrt{3}}{2}
\frac{1}{2}
\sqrt{3}
\frac{2}{\sqrt{3}}
2
\frac{1}{\sqrt{3}}