PDF chapter test TRY NOW

We will derive the trigonometric ratios of 0^{\circ} with the help of a unit circle.
 
A circle with radius 1 unit centred at the origin is called a unit circle.
 
0 and 90 deg.png
 
Here OQ = OP = OC = 1 unit (Radius).
 
Let us consider the first quadrant.
 
0 and 90 deg illus.png
 
Let the point C(x,y) be any point on the unit circle and \angle COB = \theta.
 
In the right angles triangle COB we have:
 
Opposite side = y
 
Adjacent side = x
 
Hypotenuse = 1
 
Now, let us determine the trigonometric ratios in the first quadrant with the coordinate C.
 
  • Sine \theta:
 
\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse}}
 
= \frac{y}{1}
 
= y
 
  • Cosine \theta:
 
\cos \theta = \frac{\text{Adjacent side}}{\text{Hypotenuse}}
 
= \frac{x}{1}
 
= x
 
  • Tangent \theta:
 
\tan \theta = \frac{\text{Opposite side}}{\text{Adjacent side}}
 
= \frac{y}{x}
 
When \theta = 0^{\circ}, OC coincides with OP then P = (1,0) where x = 1 and y = 0.
 
Then the trigonometric ratios are given by:
 
  • Sine 0^{\circ}:
 
\sin 0^{\circ} = y
 
= 0
 
  • Cosine 0^{\circ}:
 
\cos 0^{\circ} = x
 
= 1
 
  • Tangent 0^{\circ}:
 
\tan 0^{\circ} = \frac{0}{1}
 
= 0
 
Using these basic trigonometric ratios determine their reciprocals as follows:
 
  • Cosecant 0^{\circ}:
 
\text{cosec}\,0^{\circ} = \frac{1}{\sin 0^{\circ}}
 
= \frac{1}{0}
 
= not defined
 
  • Secant 0^{\circ}:
 
\sec 0^{\circ} = \frac{1}{\cos 0^{\circ}}
 
= \frac{1}{1}
 
= 1
 
  • Cotangent 0^{\circ}:
 
\cot 0^{\circ} = \frac{1}{\tan 0^{\circ}}
 
= \frac{1}{0}
 
= not defined
 
Let us summarize all the trigonometric ratios of 0^{\circ} in the following table.
 
 
\sin \theta
\cos \theta
\tan \theta
\text{cosec}\,\theta
\sec \theta
\cot \theta
\theta = 0^{\circ}
0
1
0
not defined
 1
not defined