PDF chapter test TRY NOW

'\(a\)' மற்றும் '\(b\)' என்பன மிகை முழு எண்கள் என்க.
 
i)ab=a×bii)ab=abiii)(a+b)(ab)=abiv)(ab)(a+b)=a2bv)(a+b)(c+d)=ac+ad+bc+bdvi)(a+b)2=a+2ab+b
The process of converting the expression in the denominator contains a term with a square root (or a number under a radical sign), to an equivalent expression whose denominator is a rational number is called rationalising the denominator.
To be in a simpler form, the denominator of the expression should not have an irrational number.
To rationalise the denominator containing single term with only one irrational number, multiply and divide by the same irrational number and simplify it.
Example:
Let us rationalise 12.
 
Here the denominator contains single irrational number 2.
 
Multiply and divide by the irrational number 2.
 
=12×22=22.
To rationalise the denominator containing two terms:
 
Step 1: Find the conjugate of the denominator. Need to change the sign between the two terms.

Step 2: Multiply both the numerator and the denominator by the conjugate of the denominator.

Step 3: Multiply both the numerator and the denominator.

Step 4: Combine like term and simplify the radicals.

Step 5: Reduce the fraction as much as possible.
Important!
To rationalise the denominator of 1a+b, multiply and divide this by ab. That is, 1a+b×abab=aba2b, where '\(a\)' and '\(b\)' are integers.
Example:
Consider the expression 274.
Here the denominator contains two terms. Let us follow the procedure to rationalise the expression.
 
Step 1: The conjugate of 74 is 7+4.
 
Step 2: Multiply both the numerator and the denominator by the conjugate of the denominator.
 
274×7+47+4
 
Step 3: Multiply both the numerator and the denominator.
 
274×7+47+4=27+8742
 
Step 4: Combining like term and simplify the radicals.
 
27+8742=27+49
 
Step 5: As it is already in reduced form, we cannot reduce further.
 
Thus, the required rationalised form is 27+49.