UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Consider an isosceles triangle ABC with angle measure 45^{\circ} right-angled at B.
 
Let the measure of the equal sides of the triangle be a units.
 
45deg.png
 
First, let us calculate the measure of the hypotenuse in the figure.
 
Since the given triangle is a right-angled triangle by the Pythagoras theorem, we have:
In a right angled triangle, \text{Hypotenuse}^{2} = \text{Adjacent side}^{2} + \text{Opposite side}^{2}.
AC^2 = AB^2 + BC^2.
 
AC^2 = a^2 + a^2
 
AC^2 =  2a^2
 
\Rightarrow AC = \sqrt{2a^2}
 
AC = a \sqrt{2} units
 
Therefore, for the given right-angled isosceles triangle we have:
 
Opposite side = a units
 
Adjacent side = a units
 
Hypotenuse = a \sqrt{2} units
 
Let us determine all the trigonometric ratios of 45^{\circ}.
 
  • Sine 45^{\circ}:
 
\sin 45^{\circ} = \frac{\text{Opposite side}}{\text{Hypotenuse}}
 
= \frac{a}{a \sqrt{2}}
 
= \frac{1}{\sqrt{2}}
 
  • Cosine 45^{\circ}:
 
\cos 45^{\circ} = \frac{\text{Adjacent side}}{\text{Hypotenuse}}
 
= \frac{a}{a \sqrt{2}}
 
= \frac{1}{\sqrt{2}}
 
  • Tangent 45^{\circ}:
 
\tan 45^{\circ} = \frac{\text{Opposite side}}{\text{Adjacent side}}
 
= \frac{a}{a}
 
= 1
 
Using these basic trigonometric ratios determine their reciprocals as follows:
 
  • Cosecant 45^{\circ}:
 
\text{cosec}\,\theta = \frac{1}{\sin \theta}
 
= \sqrt{2}
 
  • Secant 45^{\circ}:
 
\sec \theta = \frac{1}{\cos \theta}
 
= \sqrt{2}
 
  • Cotangent 45^{\circ}:
 
\cot \theta = \frac{1}{\tan \theta}
 
= 1
 
Let us summarize all the trigonometric ratios of 45^{\circ} in the following table.
 
 
\sin \theta
\cos \theta
\tan \theta
\text{cosec}\,\theta
\sec \theta
\cot \theta
\theta = 45^{\circ}
\frac{1}{\sqrt{2}}
\frac{1}{\sqrt{2}}
1
 \sqrt{2}
 \sqrt{2}
 1