PDF chapter test TRY NOW
Consider an isosceles triangle \(ABC\) with angle measure \(45^{\circ}\) right-angled at \(B\).
Let the measure of the equal sides of the triangle be \(a\) units.
![45deg.png](https://resources.cdn.yaclass.in/c577c5d7-82af-49c9-a510-85aeb47245bb/45degw200.png)
First, let us calculate the measure of the hypotenuse in the figure.
Since the given triangle is a right-angled triangle by the Pythagoras theorem, we have:
In a right angled triangle, \(\text{Hypotenuse}^{2} = \text{Adjacent side}^{2} + \text{Opposite side}^{2}\).
\(AC^2\) \(=\) \(AB^2\) \(+\) \(BC^2\).
\(AC^2\) \(=\) \(a^2\) \(+\) \(a^2\)
\(AC^2\) \(=\) \(2a^2\)
\(\Rightarrow AC\) \(=\) \(\sqrt{2a^2}\)
\(AC\) \(=\) \(a \sqrt{2}\) units
Therefore, for the given right-angled isosceles triangle we have:
Opposite side \(=\) \(a\) units
Adjacent side \(=\) \(a\) units
Hypotenuse \(=\) \(a \sqrt{2}\) units
Let us determine all the trigonometric ratios of \(45^{\circ}\).
- Sine \(45^{\circ}\):
\(\sin 45^{\circ}\) \(=\) \(\frac{\text{Opposite side}}{\text{Hypotenuse}}\)
\(=\) \(\frac{a}{a \sqrt{2}}\)
\(=\) \(\frac{1}{\sqrt{2}}\)
- Cosine \(45^{\circ}\):
\(\cos 45^{\circ}\) \(=\) \(\frac{\text{Adjacent side}}{\text{Hypotenuse}}\)
\(=\) \(\frac{a}{a \sqrt{2}}\)
\(=\) \(\frac{1}{\sqrt{2}}\)
- Tangent \(45^{\circ}\):
\(\tan 45^{\circ}\) \(=\) \(\frac{\text{Opposite side}}{\text{Adjacent side}}\)
\(=\) \(\frac{a}{a}\)
\(=\) \(1\)
Using these basic trigonometric ratios determine their reciprocals as follows:
- Cosecant \(45^{\circ}\):
\(\text{cosec}\,\theta\) \(=\) \(\frac{1}{\sin \theta}\)
\(=\) \(\sqrt{2}\)
- Secant \(45^{\circ}\):
\(\sec \theta\) \(=\) \(\frac{1}{\cos \theta}\)
\(=\) \(\sqrt{2}\)
- Cotangent \(45^{\circ}\):
\(\cot \theta\) \(=\) \(\frac{1}{\tan \theta}\)
\(=\) \(1\)
Let us summarize all the trigonometric ratios of \(45^{\circ}\) in the following table.
\(\sin \theta\) | \(\cos \theta\) | \(\tan \theta\) | \(\text{cosec}\,\theta\) | \(\sec \theta\) | \(\cot \theta\) | |
\(\theta = 45^{\circ}\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{1}{\sqrt{2}}\) | \(1\) | \(\sqrt{2}\) | \(\sqrt{2}\) | \(1\) |