PDF chapter test TRY NOW

Theorem:
If A and B are two events associated with a random experiment, then prove that:
 
(i) P(A \cap \overline B) = P(\text{only A}) = P(A) - P(A \cap B)
 
(ii) P(\overline A \cap B) = P(\text{only B}) = P(B) - P(A \cap B)
Proof for the theorem:
Statement (i):
 
The Venn diagram representing A \cap \overline B is as follows:
 
T-1_1.png 
 
To prove: P(A \cap \overline B) = P(A) - P(A \cap B)
 
Proof for statement (i):
 
 
1. (A \cap B) \cup (A \cap \overline B) = A \cap (B \cup \overline B)
 
Here, B \cup \overline B = S.
 
Thus, (A \cap B) \cup (A \cap \overline B) = A \cap S
 
Hence, (A \cap B) \cup (A \cap \overline B) = A.
 
2. (A \cap B) \cap (A \cap \overline B) = A \cap (B \cap \overline B)
 
Here, B \cap \overline B = \phi.
 
Thus, (A \cap B) \cap (A \cap \overline B) = A \cap \phi
 
Hence, (A \cap B) \cap (A \cap \overline B) = \phi.
 
Therefore, from the above properties it is clear that the events (A \cap B) and (A \cap \overline B) are mutually exclusive and its union is set A.
 
So,  P(A) = P\left[(A \cap B) \cup (A \cap \overline B)\right]
 
\Rightarrow P(A) = P(A \cap B) + P(A \cap \overline B)
 
\Rightarrow P(A \cap \overline B) = P(A) - P(A \cap B)
 
Therefore, P(A \cap \overline B) = P(\text{only A}) = P(A) - P(A \cap B).
 
Hence, proved.
 
 
Statement (ii):
 
The Venn diagram representing \overline A \cap B is as follows:
 
T-1_2.png
 
To prove: P(\overline A \cap B) = P(B) - P(A \cap B)
 
Proof for statement(ii):
 
 
1. (A \cap B) \cup (\overline A \cap B) = (A \cup \overline A) \cap B
 
Here, A \cup \overline A = S.
 
Thus, (A \cap B) \cup (\overline A \cap B) = S \cap B
 
Hence, (A \cap B) \cup (\overline A \cap B) = B.
 
2. (A \cap B) \cap (\overline A \cap B) = (A \cap \overline A) \cap B
 
Here, A \cap \overline A = \phi.
 
Thus, (A \cap B) \cap (\overline A \cap B) = \phi \cap B
 
Hence, (A \cap B) \cap (\overline A \cap B) = \phi.
 
Therefore, from the above properties it is clear that the events (A \cap B) and (\overline A \cap B) are mutually exclusive and its union is set B.
 
So,  P(B) = P\left[(A \cap B) \cup (\overline A \cap B)\right]
 
\Rightarrow P(B) = P(A \cap B) + P(\overline A \cap B)
 
\Rightarrow P(\overline A \cap B) = P(B) - P(A \cap B)
 
Therefore, P(\overline A \cap B) = P(\text{only B}) = P(B) - P(A \cap B).
 
Hence, proved.